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ABSTRACT
High-efficient point cloud compression (PCC) techniques are nec-
essary for various 3D practical applications, such as autonomous
driving, holographic transmission, virtual reality, etc. The sparsity
and disorder nature make it challenging to design frameworks for
point cloud compression. In this paper, we present a new model,
called TransPCC that adopts a fully Transformer auto-encoder
architecture for deep Point Cloud Compression. By taking the input
point cloud as a set in continuous space with learnable position em-
beddings, we employ the self-attention layers and necessary point-
wise operations for point cloud compression. The self-attention
based architecture enables our model to better learn point-wise de-
pendency information for point cloud compression. Experimental
results show that our method outperforms state-of-the-art methods
on large-scale point cloud dataset.
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• Computing methodologies→ Point-based models; 3D imag-
ing; Reconstruction.
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1 INTRODUCTION
Recently, 3D point cloud data is playing a more and more important
role in many pratical applications. In particular, point clouds are
essential for applications like virtual reality, holographic transmis-
sion, sensing for autonomous vehicle, etc. Point clouds are sets
of 3D points identified by their coordinates, which constitute the
geometry of the point cloud. Each point can also be associated with
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Figure 1: TransPCC is designed for point cloud compression
task. We propose to adopt a transformer-based auto-encoder
architecture to learn the complex dependencies among the
points. The encoder takes the raw point clouds as inputs
(green points) and extracts a compact representation from
them, while the decoder directly operates on the compact
embedding and decompresses the point cloud (orange points).

some attributes like colors, normals and reflectance. Large-scale
and dense point clouds entails a huge memory and transmission
cost. Hence, how to represent the point cloud in a compact and
structural way is a fundamental problem in practice.

Conventional point cloud compression (PCC) methods are de-
veloped under the efforts of the experts in MPEG [17], such as
Video-based PCC (V-PCC) and Geometry-based PCC (G-PCC) ap-
proaches. The V-PCC maps 3D points to 2D information format
and then applies the 2D video codec to code projected planes, while
G-PCC relied on 3D structure such as octree to encode the 3D
content directly. These standard methods show good compression
performance yet highly rely on handcrafted coding strategies and
parameters.

Nowadays, deep learning has demonstrated its powerful ability
in feature representation learning, which has also been applied
in data compression tasks. With a deep auto-encoder structure,
the encoder learns a small and compact feature representation
(that allows for compression) and the decoder tries to reconstruct
the original point cloud data in a data-driven manner. The voxel-
based methods [7, 14, 20] firstly represent point cloud in a voxel
grid, and then employ 3D convolution neural networks (CNN) in
discrete geometric domain as feature extractor. However, these
methods underutilizes the sparsity of the point clouds and induce
heavy computational and memory costs that grow cubically as the
spatial resolution increases. Another point-based methods [6, 10,
21] directly operate on the raw input points without voxelization.
These methods typically present lightweight complexity cost, yet
still suffer from poor reconstruction quality especially on large-
scale point cloud scene.

In this paper, we propose a novel paradigm, called TransPCC
that adopts a fully Transformer auto-encoder architecture for deep
Point Cloud Compression. Recently, the great success of Trans-
formers in Natural Language Processing [2, 3, 15, 19] has inspired
the development of Transformer networks for Computer Vision

https://doi.org/10.1145/3512527.3531423
https://doi.org/10.1145/3512527.3531423
https://doi.org/10.1145/3512527.3531423


tasks [4, 8, 16]. Further, the success of Transformers in 2D CV stud-
ies has inspired 3D point cloud research [12, 22]. They introduce a
Transformer-based framework in the encoding process to perform
point cloud representation learning. In this work, instead of only
utilizing its representation learning ability, we take a step further
to extend the application of transformer-based architecture into
the whole pipeline (both the encoding and decoding process) and
reveal its remarkable effectiveness in point cloud compression task.
Through taking the input point cloud as a set embedded in continu-
ous space, we employ the self-attention layer as the primary feature
aggregation operator throughout the whole encoder and decoder
network. In the encoder, we perform Farthest Point Sampling (FPS)
to reduce the cardinality of the point set and the self-attention
operator to model all pairwise interactions between points. We
handle the large-scale point clouds by restricting self-attention
blocks to considering nearest neighbors of individual points, which
enables scalability to large scenes with millions of points. While
in the decoder, we carry out interpolation procedure to progres-
sively upsample the point set and the self-attention operator for
feature propagation and aggregation. The aggregated features ob-
tained from the Transformer can not only effectively improve the
compression performance, but also brings powerful reconstruction
ability. Note that all operations in our TransPCC framework are
performed among the point sets, making our solution an efficient
approach in practice without voxelization. Additionally, the whole
auto-encoder architecture is easily trained in an end-to-end manner.

We conduct extensive experiments following the test conditions
in [21] on the large-scale point cloud SemanticKITTI [1] dataset,
which shows the superior compression efficiency of our proposed
method, outperforming previous state-of-the-art methods by a large
margin.

To sum up, our contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose
a fully Transformer based architecture for 3D point cloud
compression. We design the end-to-end TransPCC frame-
work, which adopts an auto-encoder structure fully based
on self-attention operators and point-wise operations.

• Extensive experiments reveal that the proposed TransPCC
achieves state-of-the-art compression performance on large-
scale point cloud dataset.

2 METHODOLOGY
In this section, we introduce our approach named TransPCC. The
overview of our proposed approach is illustrated in Fig. 2. In sum-
mary, the TransPCC adopts an end-to-end Auto-encoder trans-
former structure to perform point cloud compression and decom-
pression. The encoder extracts a compact and memory-efficient
representation from the original input point cloud by alternately ap-
plying down-sample and self-attention operators. Specifically, the
encoder includes four stages that execute on progressively down-
sampled point sets. The down-sampling rates for the stages are [1,
2, 2, 2], resulting in the cardinality of the point cloud set produced
in each stage is [N, N/2, N/4, N/8]. The number of blocks and the
down-sampling rates can be varied to achieve different compression
ratio. For the decoder, it consists of four stages to progressively up-
sample the points and apply the self-attention operators for feature

aggregation to achieve point reconstruction. Note that the decoder
directly operates on a set of points, which avoids discretization.
Through comparing the reconstructed points with the input point
cloud in an appropriate metric, the self-supervised network will
learn parameters in an end-to-end manner.

2.1 Encoder Blocks
We denote the input 3D point cloud as P =

{(
𝒙𝑖 ,𝒇 𝑖

)}
, |P | = 𝑁 ,

which consists of coordinates X =
{
𝒙𝑖 ∈ R3} and point features

F =
{
𝒇 𝑖 ∈ R𝐷

}
. Before we perform self-attention operation to the

input points, we need to define position encoding, which enables
the operator to fit in local structure in the data [19]. In 3D point
cloud domain, the 3D point coordinates themselves are a natural
candidate for position encoding. For this reason, we choose to
perform trainable, parameterized position encoding 𝛿 , which is
defined as follows:

𝛿 = \
(
𝒙𝑖 − 𝒙 𝑗

)
(1)

where 𝒙𝑖 and 𝒙 𝑗 are the 3D point coordinates for points 𝑖 and 𝑗 .
The encoding function \ is an MLP with two linear layers and one
ReLU function. This position encoding \ is trained end-to-end with
the other modules of our network.

Then, the self-attention layer used in our network is imple-
mented as a set operator, i.e.,

𝒚𝑖 =
∑︁

𝒇 𝑗 ∈F(𝑖)
𝜌

(
𝛾

(
𝜑
(
𝒇 𝑖
)
−𝜓

(
𝒇 𝑗

)
+ 𝛿

))
⊙
(
𝛼

(
𝒇 𝑗

)
+ 𝛿

)
(2)

where 𝒚𝑖 is the output feature. 𝜑,𝜓 , and 𝛼 are linear projections for
point-wise feature transformations. 𝛿 is a position encoding func-
tion and 𝜌 is softmax function. 𝛾 is an MLP that produces attention
vectors for feature aggregation. Note that the attention weights
here are vectors that can modulate individual feature channels. We
construct a transformer block by the linear projections for dimen-
sion reduction, the self-attention layer for information interaction,
and a residual connection for preventing the vanishing gradients.
To reduce the cardinality of the point sets progressively, we build
a down-sampling module after each transformer block, which in-
cludes Farthest Point Sampling (FPS) [13] operation and a kNN
model for feature vector pooling. Each input feature goes through
a linear transformation, followed by batch normalization, ReLU,
and max pooling. We constuct the encoder network by stacking
the transformer block and the down-sampling block progressively.
The last layer consists of an MLP to compress the features of size
R𝑁×𝐷out to the desired dimension R𝑁×𝐷emb .

2.2 Decoder Blocks
The goal of the decoder network is to reconstruct the whole point
clouds from the compact embedding. Herewe propose a transformer-
based decoder for feature propagation and aggregation, which
brings powerful reconstruction ability. To map features from the
down-sampled input point set onto its higher resolution point set,
we process it by a linear layer, a batch normalization layer, a ReLU
non-linear function and trilinear interpolation. These interpolated
features from the preceding decoder stage are then passed into the
same transformer block as in the encoder for feature refinement
and information interaction. We feed the feature of the last layer to
an MLP to refine the coordinates.
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(b) Down-sampling Block

kNN

Farthest Point Sampling

Local Max Pooling

(𝒙𝟏, 𝒇)
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Figure 2: The architecture of our TransPCC network and detailed structure design for each block. Thewhole process is consisting
of encoder part for data compression and decoder part for data decompression. The encoder takes a point cloud as input,
and extracts a compact and memory-efficient representation from the original input point cloud by alternately applying
down-sampling blocks and transformer operators. The compressed codeword is transferred from sender to receiver and will
later be used by the decoder to decompress the point cloud. For the decoder, it progressively up-sample the points and apply the
transformer blocks for feature aggregation to achieve point reconstruction. The self-supervised network will learn parameters
in an end-to-end manner enforced by the loss function between the input and output. Encoder and decoder will be saved
separately by sender and receiver to finish the whole process.

2.3 Optimization
The loss function for point cloud compression should provide
a quantitative measurement for the quality of the reconstructed
points. Directly measuring the distance between two points, such
as euclidean distance, are unsuitable since the point clouds are
unordered. Hence, we choose Chamfer Distance (L𝐶𝐷 ) [5] as our
loss function, which measures the mean distance of one point to
its nearest neighbor between two point sets:

LCD (Pin ,Pout ) = 𝑑2 (Pin ,Pout ) + 𝑑2 (Pout ,Pin ) ,

𝑑2 (
P𝑖 ,P𝑗

)
=

1
|P𝑖 |

∑︁
𝒙𝑖 ∈P𝑖

min
𝒙 𝑗 ∈P𝑗

𝒙𝑖 − 𝒙 𝑗

2
2

(3)

wherePin denotes the input point cloud and Pout the decompressed
point cloud. This metric is invariant to the permutation of points,

and prevents the network from flooding the whole space with
points.

Taking consideration of valid intermediate results in different
scale of each decoder block and achieve multi-scale decompression,
we add the Chamfer Distances between the input point cloud and
the intermediate output points of all the decoder blocks to make
up the Multi-scale loss function. which is defined as

LMulti =
∑︁
𝑗

LCD
(
Pin , P̂𝑗

)
(4)

Finally, we construct our total loss L𝑡𝑜𝑡𝑎𝑙 by summing the LCD
and LMulti together in the following equation:

L𝑡𝑜𝑡𝑎𝑙 = LCD + _LMulti (5)

where the _ is a loss weight to trade-off the impact of the Multi-
scale loss. We jointly optimize the parameters of the whole network
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Figure 3: Compression results on the test split of the SemanticKITTI dataset. We compare our proposed TransPCC against the
state-of-the-art methods, including Draco, the MPEG Anchor [11], a binary Octree implementation, and the deep learning
based point cloud compression model Depoco [21]. Our approach outperforms the previous methods by a large margin under
the same BPP in all metrics.

including both the encoder and decoder in an end-to-end training
scheme.

3 EXPERIMENTS
3.1 Experiment Setup
3.1.1 Datasets. To validate the effectiveness of our proposedmethod
on the point cloud compression task, we choose to conduct exper-
iments on the SemanticKITTI [1] dataset. We follow all the same
pre-process procedure and the same data split suggested in [21],
where using sequence 00 to 10 (except 08) for training, a small subset
of the training data for validation, and sequence 08 for testing.

3.1.2 Evaluation metrics. To quantitative evaluate the quality of a
compression algorithm, we focus on both compression ratio and
reconstruction error. A good compression algorithm should have
efficient compression ratio and low reconstruction error. We adopt
the Bits Per Points (BPP) required for storing the encoding of the
input point cloud For the evaluation of compression ratio, As for
the measurement of the reconstruction error, We use 3 metrics
following [21]. The first one is mean Chamfer Distance 𝐷𝑑 ,

𝐷𝑑 (Pin ,Pout ) = �̄�𝑑 (Pin ,Pout ) + �̄�𝑑 (Pout ,Pin ) ,

�̄�𝑑

(
P𝑖 ,P𝑗

)
=

1
|P𝑖 |

∑︁
𝒙𝑖 ∈P𝑖

min
𝒙 𝑗 ∈P𝑗

𝑑
(
𝒙𝑖 − 𝒙 𝑗

)
.

(6)

which indicates the distance �̄�𝑑 from the ground truth point cloud
P𝑖𝑛 to the reconstruction P𝑜𝑢𝑡 and vise versa, where we adopt
the L2-norm to calculate the distance between two points, i.e.,
𝑑 =

𝒙𝑖 − 𝒙 𝑗


2. Another metric is the symmetric plane Cham-

fer Distance 𝐷⊥ = 𝐷𝑑 (Pin ,Pout ) with 𝑑 =
��𝒏𝑇 (

𝒙𝑖 − 𝒙 𝑗

) ��, where
𝒏 ∈ R3 denotes the ground truth normal of that point. The third
metric is the Intersection-Over-Union (IoU) between occupancy
grids G for both point clouds, i.e.,

𝐼𝑜𝑈 =
|𝐺in ∩𝐺out |
|𝐺in ∪𝐺out |

. (7)

where the occupancy grids 𝐺in and 𝐺out have a resolution of 20 ×
20 × 10 cm3 as used by [9].

3.1.3 Implementation details. The proposed model is implemented
in PyTorch 1 and trained on one NVIDIA RTX3090 GPU. For the fair
comparison, we keep the data pre-processing steps and hyperpa-
rameter settings the same as the Depoco model [21] in the released
implementation2. We use the Adam optimizer with weight decay
and initial learning rate set to 1𝑒 − 4 and 1𝑒 − 3, respectively. The
batch size is set to 16. We optimize the total loss L𝑡𝑜𝑡𝑎𝑙 with the
weight _ = 0.2 for 100 epochs.

3.2 Results and Analysis
We present the compression performance on the SemanticKITTI
dataset in Fig. 3.We choose Draco3, theMPEGAnchor [11], a binary
Octree implementation, and the deep learning based point cloud
compression model Depoco [21] as our baselines for comparison.
As we can see, our proposed method outperforms the all the base-
lines in terms of Chamfer Distance based metrics as well as IoU. It is
noteworthy that our TransPCC achieves 6.5 times lower reconstruc-
tion errors for bit rates under 0.2 BPP compared to the strongest
baseline Depoco, which is also a deep learning approach based on
KPConv [18]. The large performance gap between TransPCC and
Depoco demonstrates our method learns a more expressive point
feature, which is very essential for point cloud compression task.

4 CONCLUSIONS
In this paper, we have presented TransPCC, a Transformer frame-
work for deep point cloud compression via an auto-encoder archi-
tecture. The entire network architecture is fully built on top of the
self-attention operator and point-wise operations. Experimental
results verify that the TransPCC achieves a new state-of-the-art
performance on the large-scale dense point cloud dataset, reveal-
ing the remarkable effectiveness of Transformers in 3D point cloud
compression. In future, we will do further study on the Transformer-
based deep point cloud compression, such as specific network de-
signs, new operator development, and so on.

1https://github.com/jokieleung/TransPCC
2https://github.com/PRBonn/deep-point-map-compression
3https://github.com/google/draco
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